Solving Logarithmic Equations (Part 1)

These notes are intended as an introduction to section 5.7 (p. 417 - 421) in your workbook. It includes material from section 5.4 (p. 375 - 380). You should review the relevant parts of that section for additional examples.

Solving Simple Logarithmic Equations

To solve a logarithmic equation of the form $y = \log_a x$, change it to exponential form and solve.

Example (not in workbook) Solve for *y*:

a) $y = \log_2 16$

b)
$$y = \log_{\frac{2}{3}} \left(\frac{16}{81} \right)$$

Example (not in workbook) Solve for *a*:

a) $3 = \log_a 125$

b)
$$\log_a \frac{2}{3} = -\frac{1}{3}$$

c)
$$\log_a\left(\frac{27}{8}\right) = -\frac{3}{4}$$

Example (not in workbook) Solve for *x*:

a) $4 = \log_3 x$

b) $-3 = \log_5 x$

Example (5.4 Ex 2, sidebar p. 378) Evaluate each logarithm.

a) log₅3125

b)
$$\log_6\left(\frac{1}{216}\right)$$

c) $\log_8\left(2\sqrt[3]{2}\right)$

Example (5.4 Ex 3, sidebar p. 379) To the nearest tenth, estimate the value of $log_5 100$.

Homework: #4, 7, 9, 13, 15 in the section 5.4 exercises (p. 380 – 385). Answers on p. 386. Supplemental Worksheet #10

Supplemental Worksheet #10

Solve for *x*:

- 1. $\log_5 x = 2$
- 2. $\log_x 25 = 2$
- 3. $\log_x 16 = -\frac{4}{3}$
- 4. $\log_{\frac{1}{2}} \left(\frac{1}{2}\right)^4 = x$
- 5. $\log_x x^4 = 4$
- 6. $\log_7 1 = x$
- 7. $\log_x 16 = \frac{4}{3}$
- 8. $\log_2 x = 2$
- 9. $\log_{16} 2 = x$
- 10. $\log_{32} x = \frac{2}{5}$
- 11. $\log_5 25^5 = x$
- 12. $27^{\log_3 9} = x$
- 13. $\log_6(\log_2 64) = x$
- 14. $\log_x \sqrt{5} = \frac{1}{4}$ 15. $\log_5 (x^2 - 4x) = 1$