Solving Logarithmic Equations (Part 1)

These notes are intended as an introduction to section 5.7 (p. $417-421$) in your workbook. It includes material from section 5.4 (p. $375-380$). You should review the relevant parts of that section for additional examples.

Solving Simple Logarithmic Equations

To solve a logarithmic equation of the form $y=\log _{a} x$, change it to exponential form and solve.

Example (not in workbook)
Solve for y :
a) $y=\log _{2} 16$
b) $y=\log _{\frac{2}{3}}\left(\frac{16}{81}\right)$

Example (not in workbook)

Solve for a :
a) $3=\log _{a} 125$
b) $\log _{a} \frac{2}{3}=-\frac{1}{3}$
c) $\log _{a}\left(\frac{27}{8}\right)=-\frac{3}{4}$

Example (not in workbook)

Solve for x :
a) $4=\log _{3} x$
b) $-3=\log _{5} x$

Example (5.4 Ex 2, sidebar p. 378)

Evaluate each logarithm.
a) $\log _{5} 3125$
b) $\log _{6}\left(\frac{1}{216}\right)$
c) $\log _{8}(2 \sqrt[3]{2})$

Example (5.4 Ex 3, sidebar p. 379)

To the nearest tenth, estimate the value of $\log _{5} 100$.

Homework: \#4, 7, 9, 13, 15 in the section 5.4 exercises (p. $380-385$). Answers on p. 386. Supplemental Worksheet \#10

Supplemental Worksheet \#10

Solve for x :

1. $\log _{5} x=2$
2. $\log _{x} 25=2$
3. $\log _{x} 16=-\frac{4}{3}$
4. $\log _{\frac{1}{2}}\left(\frac{1}{2}\right)^{4}=x$
5. $\log _{x} x^{4}=4$
6. $\log _{7} 1=x$
7. $\log _{x} 16=\frac{4}{3}$
8. $\log _{2} x=2$
9. $\log _{16} 2=x$
10. $\log _{32} x=\frac{2}{5}$
11. $\log _{5} 25^{5}=x$
12. $27^{\log _{3} 9}=x$
13. $\log _{6}\left(\log _{2} 64\right)=x$
14. $\log _{x} \sqrt{5}=\frac{1}{4}$
15. $\log _{5}\left(x^{2}-4 x\right)=1$
